Главная
 
Alachson-groupЧетверг, 25.04.2024, 15:32



| RSS
Главная
[ Новые сообщения · Участники · Правила форума · Поиск · RSS ]
  • Страница 1 из 1
  • 1
Форум Израиль 4х4 » РЕМЗОНА 4Х4 » Двигатель, системы охлаждения, топливная и зажигание » MIVEC / VVT-i / VTEC
MIVEC / VVT-i / VTEC
ediДата: Среда, 10.11.2010, 14:21 | Сообщение # 1
Авторитет
Группа: Проверенные
Сообщений: 5906
Награды: 12
Статус: Offline
MIVEC

Mitsubishi Innovative Valve timing Electronic Control system
Система электронного управления фазами газораспределения и подъемом клапанов

1. Принцип MIVEC

Система MIVEC обеспечивает два режима работы клапанов, низкоскоростной режим — два клапана каждого цилиндра имеют разный подъем, и высокоскоростной режим — оба клапана имеют равный подъем. Один из двух режимов выбирается автоматически в зависимости от условий работы двигателя.

Когда скорость двигателя относительно низка, разница в подъеме клапанов стабилизирует сгорание, способствует уменьшению расхода топлива, уменьшению эмиссии и повышает вращающий момент. Когда скорость двигателя относительно высока, увеличение времени открытия клапанов и высоты подъема последних, значительно увеличивает объем впуска и выпуска топливно-воздушной смеси.

2. Конструкция системы MIVEC

В данном случае рассматривается двигатель с одним распредвалом (SOHC), конструкция MIVEC для которого сложнее, чем для двигателя с двумя распредвалами (DOHC, как у Кольта), поскольку для управления клапанами используются промежуточные валы (коромысла) mikedVSmiked.

Для того, чтобы внедрить систему MIVEC без изменения основной конструкции существующей головки блока цилиндров (SOHC 4G69), изменены профили новых кулачков механизма газораспределения (развитие существующей технологии DOHC MIVEC). Как показано в fig 5, механизм клапана для каждого цилиндра включает «низкопрофильный кулачок» (low-lift) и соответствующий рокер коромысла для одного клапана, «кулачок среднего профиля» (medium-lift) и соответствующий рокер коромысла для другого клапана, «высокопрофильный кулачок» (high-lift), который центрально расположен между низким и средним кулачком и Т-образный рычаг, который является единым целым с «высокопрофильным кулачком».

Когда скорость двигателя относительно низка, крыло Т-образного рычага двигается без какого либо воздействия на рокеры; впускные клапана соответственно управляются низко- и среднепрофильными кулачками. Когда двигатель достигает предопределенную более высокую скорость, поршни в коромыслах двигаются гидравлическим давлением масла так, что Т-образный рычаг начинает давить на оба рокера и оба клапана таким образом управляются высокопрофильным кулачком. Форма рокеров и кулачков была оптимизирована с помощью анализа поведения всей структуры и конструкции на компьютерной модели, показанной на fig 6. Переключение профилей кулачков происходит на скорости двигателя 3500 об/мин (скорость на которой кривая вращающего момента для низкоскоростного режима пересекает кривую вращающего момента для высокоскоростного режима).

Система MIVEC не включает в себя механизмов переключения профилей кулачков по времени, поэтому иногда возможно отодвигание Т-образного рычага поршнями при определенном давлении масла. Таким образом, высокоскоростной режим устанавливается в следующем (по порядку работы зажигания) цилиндре. Встроенный в профиля аккумулятор ограничивает течение масла до 0.6% от хода управляющего поршня для всех 4 цилиндров и таким образом повышает износостойкость системы.

Прикрепления: 0176379.gif (14.4 Kb) · 0588905.gif (10.3 Kb) · 9107714.gif (19.0 Kb)


Я счастлив по умолчанию,не лезьте пожалуйста в настройки©


Сообщение отредактировал edi - Среда, 10.11.2010, 14:39
 
ediДата: Среда, 10.11.2010, 14:38 | Сообщение # 2
Авторитет
Группа: Проверенные
Сообщений: 5906
Награды: 12
Статус: Offline
3. Эффект системы MIVEC

•Мощность. Благодаря увеличению подъему клапанов и, соответственно, увеличению зоны открытия в высокоскоростном режиме скорость подачи топливно-воздушной смеси чрезвычайно высока, что значительно увеличивает объем впуска и приводит к увеличению максимальной мощности, сравнимой с системами охлаждения впускного воздуха и высококомпрессионными двигателями GDI. Распределение компонентов улучшения максимальной мощности показано на fig 7.

•Экономичность. В диапазоне, где двигатель использует низкоскоростные кулачки, подача в цилиндры однородной смеси топливо-воздух обеспечивает высокую стабильность сгорания. Рециркуляция отработанных газов (EGR) также способствует снижению расхода топлива. Подача в цилиндр воздуха и коэффициент подачи отработанных газов, обычно имеют обратное отношение, но оба были оптимизированы посредством компьютерного анализа.
•Уменьшение токсичности отработанных газов. Увеличенная подача в цилиндры обедненной смеси воздух-топливо и позднее зажигание во время холодного пуска, позволяет достаточно быстро нагреть катализатор до рабочей температуры (fig 10). Для того чтобы уменьшить потери КПД (главным образом потери вращающего момента на низких скоростях двигателя) определяемые сопротивлением системы выпуска, был применен двойной выпускной коллектор, включающий передний катализатор. Благодаря чему был достигнут уровень «75%-level reduction» по японским стандартам.

http://cars.panick.ru/howitworks/engines/mivec
http://colt.galant-info.ru/mivec.htm

Прикрепления: 8812906.gif (7.7 Kb) · 0266827.gif (6.5 Kb)


Я счастлив по умолчанию,не лезьте пожалуйста в настройки©


Сообщение отредактировал edi - Среда, 10.11.2010, 14:41
 
ediДата: Среда, 10.11.2010, 14:47 | Сообщение # 3
Авторитет
Группа: Проверенные
Сообщений: 5906
Награды: 12
Статус: Offline
Принцип работы MIVEC

• Приводная звездочка вала впускных клапанов имеет возможность вращаться относительно самого вала и MIVEC, регулируя поступление масла в соответствующие камеры, (для смещения вперед или назад) определяет угол поворота звездочки относительно приводного вала.

• Угол сдвига звездочки относительно вала контролируется с помощью управляемого масляного клапана, размещенного в головке блока цилиндров.

В качестве примера рассмотрим операцию "смещение вперед".
• Под управлением сигнала от блока управления двигателем, золотник масляного клапана движется вперед.
• Масло под давлением из блока цилиндров попадает в камеру "смещения вперед" звездочки MIVEC, вращая ротор в сторону опережения. Поскольку ротор жестко соединен с распределительным валом впускных клапанов, момент открытия клапанов происходит раньше.

• Процесс "сдвига назад" происходит аналогично. Золотник сдвигается назад, освобождая канал для подачи масла в "камеру смещения назад"

• Когда требуемый угол сдвига достигнут, каналы обеих камер перекрываются клапаном и давление масла удерживает звездочку в фиксированном положении.

http://colt.galant-info.ru/mivec.htm


Я счастлив по умолчанию,не лезьте пожалуйста в настройки©
 
ediДата: Среда, 10.11.2010, 15:09 | Сообщение # 4
Авторитет
Группа: Проверенные
Сообщений: 5906
Награды: 12
Статус: Offline
VVT-i

Рассмотрим здесь принцип функционирования системы VVT-i второго поколения, которая применяется сейчас на большинстве тойотовских двигателей.

Система VVT-i (Variable Valve Timing intelligent - изменения фаз газораспределения) позволяет плавно изменять фазы газораспределения в соответствии с условиями работы двигателя. Это достигается путем поворота распределительного вала впускных клапанов относительно вала выпускных в диапазоне 40-60° (по углу поворота коленвала). В результате изменяется момент начала открытия впускных клапанов и величина времени "перекрытия" (то есть времени, когда выпускной клапан еще не закрыт, а впускной - уже открыт).

1. Конструкция

Исполнительный механизм VVT-i размещен в шкиве распределительного вала - корпус привода соединен со звездочкой или зубчатым шкивом, ротор - с распредвалом.
Масло подводится с одной или другой стороны каждого из лепестков ротора, заставляя его и сам вал поворачиваться. Если двигатель заглушен, то устанавливается максимальный угол задержки (то есть угол, соответствующий наиболее позднему открытию и закрытию впускных клапанов). Чтобы сразу после запуска, когда давление в масляной магистрали еще недостаточно для эффективного управления VVT-i, не возникало ударов в механизме, ротор соединяется с корпусом стопорным штифтом (затем штифт отжимается давлением масла).

Управление VVT-i осуществляется при помощи клапана VVT-i (OCV - Oil Control Valve).
По сигналу блока управления электромагнит через плунжер перемещает основной золотник, перепуская масло в том или ином направлении. Когда двигатель заглушен, золотник перемещается пружиной таким образом, чтобы установился максимальный угол задержки.

2. Функционирование

Для поворота распределительного вала масло под давлением при помощи золотника направляется к одной из сторон лепестков ротора, одновременно открывается на слив полость с другой стороны лепестка. После того, как блок управления определяет, что распредвал занял требуемое положение, оба канала к шкиву перекрываются и он удерживается в фиксированном положении.

При повороте распредвала в сторону более раннего открытия клапанов

При повороте распредвала в сторону более позднего открытия клапанов

http://autodata.ru/st/06_vvti/vvti.htm


Я счастлив по умолчанию,не лезьте пожалуйста в настройки©


Сообщение отредактировал edi - Среда, 10.11.2010, 15:17
 
ediДата: Среда, 10.11.2010, 15:46 | Сообщение # 5
Авторитет
Группа: Проверенные
Сообщений: 5906
Награды: 12
Статус: Offline
VTEC

Аббревиатура VTEC полностью расшифровывается следующим образом — Variable Valve Timing and Lift Electronic Control. В переводе на русский язык означает «электронная система управления временем открытия и высотой подъема клапанов» или, если говорить языком специалистов, электронная система регулировки фаз газораспределения. Этот механизм предназначен для того, чтобы оптимизировать прохождение воздушно-топливной смеси в камеры сгорания.

Двигатель внутреннего сгорания преобразует химическую энергию, накопленную в топливе, в тепловую. Такое преобразование происходит во время сгорания горючей смеси. При этом возрастает температура и давление в цилиндре. Под давлением поршни двигателя опускаются вниз и, толкая коленчатый вал, приводят его в движение. Так химическая энергия преобразуется в механическое движение. Механическая сила определяется величиной крутящего момента. Способность двигателя поддерживать некоторую величину крутящего момента при некотором числе оборотов в минуту определяется как мощность. Мощность определяет, какую работу может производить двигатель. Весь процесс, осуществляемый двигателем внутреннего сгорания, не эффективен на 100%. На самом деле всего около 30% энергии, содержащейся в топливе, преобразуются в механическую энергию.

Теоретическая физика говорит о том, что при данном КПД для достижения высокой отдачи от мотора необходимо использовать больше топлива: в результате существенно возрастет мощность. Очевидно, что в этом случае нужно использовать двигатель с огромным рабочим объемом и поступиться принципами экономичности. Другой метод диктует необходимость предварительно сжимать топливную смесь посредством турбины и затем сжигать ее в цилиндрах небольшого размера. Однако и в этом случае расход топлива будет пугающим. В свое время концерн Honda пошел по иному пути, начав исследования с целью оптимизации работы двигателя внутреннего сгорания. В результате появилась технология VTEC, наделяющая мотор отменной экономичностью на низких оборотах и высокой мощностью при его «раскручивании».

Два алгоритма

Если сравнить скоростные характеристики различных двигателей, то нетрудно заметить, что у одних максимум крутящего момента достигается на низких оборотах (в диапазоне 1800-3000 об/мин), у других — на более высоких (в диапазоне 3000-4500 об/мин). Оказывается, есть зависимость между тем, каким образом на распределительном валу установлены кулачки, открывающие клапаны, и тем, какую мощность развивает мотор на различных оборотах коленчатого вала. Чтобы понять, чем это вызвано, представьте себе двигатель, работающий крайне медленно. Например, при 10-20 оборотах в минуту рабочий цикл в одном цилиндре занимает 1 секунду. При опускании поршня впускной клапан открывается, позволяя горючей смеси наполнить цилиндр, и закрывается, когда поршень достигает нижней мертвой точки. После завершения цикла сгорания поршень начнет движение вверх. При этом откроется выпускной клапан, позволив отработавшим газам покинуть рабочий объем цилиндра и закроется, когда поршень достигнет верхней мертвой точки. Такой алгоритм был бы идеален, если бы мотор работал на минимуме оборотов. Однако в реальной жизни двигатель куда энергичней.

С ростом ритма работы мотора описанный алгоритм просто не выдерживает критики. Если число оборотов коленвала достигает 4000 в минуту, клапаны открываются и закрываются 2000 раз ежеминутно, или 30-40 раз каждую секунду. На такой скорости поршню чрезвычайно сложно всосать в цилиндр необходимый объем горючей смеси. То есть в результате впускного сопротивления возникают насосные потери, и это главная причина, по которой уменьшается эффективность работы двигателя. Для облегчения участи мотора при работе на больших оборотах приходится, например, шире открывать впускной клапан. Разумеется, это упрощенное описание работы, но оно дает общее представление. Однако на малых оборотах такой алгоритм не годится: настройка распредвала «на скорость» лишь увеличит расход топлива. Следовательно, для лучшей эффективности нужно сочетать оба алгоритма работы, которые воплощены в механизме VTEC.

Появившись в 1989 году, система VTEC дважды модернизировалась, и сегодня мы имеем дело с ее третьей серией. Система VTEC использует возможности электроники и механики и позволяет двигателю эффективно распоряжаться возможностями сразу двух распредвалов, или, в упрощенных версиях, одного. Контролируя число оборотов и диапазоны работы силового агрегата, его компьютер может активизировать дополнительные кулачки с тем, чтобы подобрать наилучший режим работы.

DOHC VTEC

В 1989 году на внутренний японский рынок поступили две модификации Honda Integra — RSi и XSi, использовавшие первый двигатель с системой DOHC VTEC. Ее силовой агрегат модели B16A при объеме 1,6 литра достигал мощности в 160 л.с., но при этом отличался хорошей тягой на низах, топливной экономичностью и экологической чистотой. Поклонники марки Honda до сих пор помнят и ценят этот великолепный мотор, тем более что его многократно усовершенствованный вариант и по сей день используется на моделях Civic.

Двигатель с системой DOHC VTEC имеет два pаспpедвала (один для впускных, другой для выпускных клапанов) и 4 клапана на цилиндр. Для каждой пары клапанов предусмотрена особая конструкция — группа из трех кулачков. Следовательно, если мы имеем дело с 4-цилиндровым 16-клапанным мотором с двумя распредвалами, то таких групп будет 8. Каждая группа занимается отдельной парой клапанов. Два кулачка расположены на внешних сторонах группы и отвечают за действие клапанов на низких оборотах, а средний подключается на высоких оборотах. Внешние кулачки непосредственно контактируют с клапанами: опускают их при помощи коромысел (рокеров). Отдельный средний кулачок до поры до времени вращается и вхолостую нажимает на свое коромысло, которое активируется при достижении определенного высокого числа оборотов коленвала. В дальнейшем эта центральная часть отвечает за открытие и закрытие клапанов, хотя и действует как специальный промежуточный механизм.

Когда двигатель работает на малом ходу, пары впускных и выпускных клапанов открываются соответствующими кулачками. Их форма, как и у большинства аналогичных моторов, выполнена в виде эллипса. Однако эти кулачки способны обеспечивать лишь экономичный режим работы двигателя и только на малых оборотах. При достижении высокой скорости вращения распредвала задействуется специальный механизм. «Незанятый» до этого работой средний кулачок вращался и без какого-либо эффекта нажимал на среднее коромысло, никак не связанное с клапанами. Однако во всех трех коромыслах предусмотрены отверстия, в которые под высоким давлением масла загоняется металлический пруток. Таким образом, группа жестко фиксируется и в дальнейшем работает как одно целое. Тут в работу вступает отдыхавший до этого средний кулачок. Он имеет более продолговатую форму и поэтому при его нажатии все три коромысла, а значит и клапана, опускаются гораздо ниже и на больший промежуток времени остаются открытыми. В этом случае двигатель может «дышать» свободнее, развивать и поддерживать высокий крутящий момент и хорошую мощность.

SOHC VTEC

После успеха системы DOHC VTEC компания Honda с еще большим рвением подошла к развитию и использованию своей новации. Моторы с VTEC проявили себя как надежные и экономичные, стали реальной альтернативой увеличению рабочего объема или использованию турбин. Поэтому несколько позднее была представлена система SOHC VTEC. Подобно своему «коллеге» DOHC новинка также предназначалась для оптимизации работы двигателя в разных режимах. Но из-за простоты своей конструкции и более скромных показателей мощности двигатели с SOHC VTEC выпускались меньшими объемами. Одним из первых двигателей, использующих упрощенную систему, стал обновленный агрегат D15B, выдававший 130 л.с. при объеме в 1,5 л. Этот мотор с 1991 устанавливался года на Honda Civic.

В моторе SOHC предусмотрен один-единственный распредвал на весь блок цилиндров. Поэтому кулачки впускных и выпускных клапанов располагаются на одной оси. Однако здесь также предусмотрены группы-тройки, в каждой из которых есть один специальный центральный кулачок. Простота конструкции заключается в том, что в двух режимах — для низких и для высоких оборотов — могут работать только впускные клапана. Промежуточный механизм с дополнительным кулачком и коромыслом также как и в случае с DOHC VTEC перехватывает на себя открытие и закрытие впускных клапанов, в то время как выпускные всегда работают в постоянном режиме.

Может создаться впечатление, что SOHC VTEC в чем-то хуже, чем DOHC VTEC. Однако это не так: эта система имеет ряд преимуществ, среди которых простота конструкции, компактность двигателя за счет его незначительной ширины, меньший вес. Кроме того SOHC VTEC возможно вполне легко использовать на двигателях пpедыдущего поколения, тем самым модернизируя их. В итоге силовые агрегаты с SOHC VTEC достигают тех же результатов, пусть и не столь ярких и удивительных.

SOHC VTEC-E

Если назначение описанных выше систем VTEC состоит в сочетании максимальной мощности на предельных оборотах и довольно уверенной, но экономичной работе на «низах», то VTEC-E призвана помочь двигателю в достижении предельной экономии.

Но прежде чем рассмотреть очередное изобретение Honda необходимо разобраться с теорией. Известно, что топливо предварительно смешивается с воздухом и затем воспламеняется в цилиндрах (есть еще иной вариант — непосредственный впрыск, при котором воздух и топливо поступают в цилиндры отдельно). На мощность двигателя также влияет и то, насколько однородна такая смесь. Дело в том, что на малых оборотах невысокая скорость потока при всасывании препятствует смешению топлива и воздуха. В результате на холостом ходу двигатель может работать неуверенно. Чтобы предотвратить это, в цилиндры поступает обогащенная топливом смесь, что сказывается на экономичности. Система VTEC-E способна обеспечить уверенную работу двигателя на малых оборотах на обедненной топливом горючей смеси. При этом также достигается существенная экономия. В отличие от других механизмов, в системе VTEC-E нет никаких дополнительных кулачков. Так как эта технология нацелена на снижение потребления топлива на малых оборотах, то и затрагивает она действие впускных клапанов. VTEC-E применяется только в SOHC-двигателях (с одним распредвалом) с четырьмя клапанами на цилиндp из-за его «склонности» к низкому расходу топлива.

В отличие от других VTEC-моторов, где кулачки имеют приблизительно одинаковый профиль, в силовых агрегатах с VTEC-E используются две конфигурации. Таким образом, впускные клапана приводятся в движение кулачками различной формы. Профиль одного из них имеет традиционную форму, а другой практически круглый — слегка овальный. Поэтому один из клапанов опускается в нормальном режиме, а другой едва приоткрывается. Горючая смесь проходит через нормальный клапан легко, а через приоткрытый — весьма скудно. Из-за несимметричности потоков поступающей смеси в цилиндре возникают причудливые завихpения, в которых воздух и топливо смешиваются должным образом. В результате двигатель может pаботать на бедной смеси. С увеличением оборотов концентрация топлива растет, но режим, при котором реально работает лишь один клапан, становится помехой. Поэтому, приблизительно при достижении 2500 об/мин коромысла замыкаются и приводятся в движение нормальным кулачком. Замыкание происходит точно так же как и в других системах VTEC.

Систему VTEC-E часто незаслуженно считают изобретением, нацеленным исключительно на экономию. Тем не менее, по сравнению с простыми моторами, агрегаты с таким механизмом не только экономичнее, но и мощнее. За экономию отвечает первый режим, в котором работает один клапан, а за показатели мощности — «чистокровный» VTEC, подразумевающий широкое открытие впускных клапанов. Если сравнить два аналогичных мотора, один из которых оборудован механизмом VTEC-E, то простой агрегат окажется на 6-9% слабее и прожорливей.

Трехрежимный SOHC VTEC

Этот механизм представляет собой объединение системы SOHC VTEC и SOHC VTEC-E. В отличие от всех описанных выше систем эта имеет не два режима работы, а три. В зоне низких оборотов система обеспечивает экономичный режим работы двигателя на обедненной топливовоздушной смеси (как VTEC-E). В этом случае используется только один из впускных клапанов. На средних оборотах в работу включается второй клапан, но фазы газораспределения и высота подъема клапанов не изменяются. Двигатель в этом случае реализует высокий крутящий момент. На режиме высоких оборотов оба клапана управляются одним центральным кулачком, отвечающим за снятие с двигателя максимальной мощности. Эта система достаточно универсальна. Так, например, двигатель объемом 1,5 литра с таким газораспределительным механизмом проявляет неплохую удельную мощность: 86 л.с. на 1 л. рабочего объема. Одновременно с этим, если двигатель работает в первом, экономичном 12-клапанном режиме, расход при движении с постоянной скоростью 60 км/ч на автомобиле Honda Civic составляет около 3,5 л на 100 км.

i-VTEC

Буква «i» в названии означает intelligent, то есть «умный». Прежние версии VTEC способны регулировать степень открытия клапанов лишь в 2-3 режимах. Конструкция нового газораспределительного механизма i-VTEC предполагает использование помимо основной системы VTEC дополнительную систему VTC (Variable Timing Control), непрерывно регулирующую момент начала открытия впускных клапанов. Открытие впускных клапанов задается в зависимости от нагрузки двигателя и регулируется посредством изменения угла установки впускного распределительного вала относительно выпускного. В двигателях с i-VTEC распредвал крепится к приводному шкиву через специальную гайку-шестерню, которая способная «доворачивать» его на угол до 600.

Применение системы VTC на ряду с VTEC позволяет эффективнее наполнять цилиндры двигателя топливо-воздушной смесью, а также улучшить полноту ее сгорания. Использование механизма i-VTEC позволяет достичь приемистости эквивалентной двигателям с рабочим объемом 2 литра, при этом топливная экономичность даже лучше чем у 1,6 литрового двигателя.

Семейство газораспределительных механизмов VTEC не представляет собой ничего волшебного, но дает просто поразительный эффект. Моторы Honda прямо-таки умеют подстраиваться под нагрузку, предоставляя удивительную мощность при скромном рабочем объеме. И в то же время на холостом и малом ходах японские моторы поражают выдающейся экономичностью. Вполне возможно, что следующим этапом в развитии систем VTEC станет механизм с отдельными соленоидами на каждый клапан, что позволит с хирургической точностью регулировать открытие клапанов.

http://www.honda.by/top_menu.php?id=58

Прикрепления: 9605268.jpg (34.3 Kb) · 7758574.jpg (37.8 Kb) · 3371409.jpg (57.8 Kb)


Я счастлив по умолчанию,не лезьте пожалуйста в настройки©


Сообщение отредактировал edi - Среда, 10.11.2010, 15:53
 
Форум Израиль 4х4 » РЕМЗОНА 4Х4 » Двигатель, системы охлаждения, топливная и зажигание » MIVEC / VVT-i / VTEC
  • Страница 1 из 1
  • 1
Поиск:


Copyright MyCorp © 2024